Trainability and (selective) transferability of interference-resolution skills
Neuroscience and Cognitive Science Program, Center for Advanced Study of Language
University of Maryland, College Park

1. BACKGROUND & HYPOTHESES

- Interference resolution (IR) refers to the ability to regulate mental activity to resolve among competing/conflicting representations.1,2
- Cognitive training designs provide a unique opportunity to glean the degree to which tasks tap similar underlying resources; namely, if an ability is trainable, then it should confer transfer to tasks relying on shared mechanisms (i.e., process specificity).3,4
- Research Question: Does practicing a task designed to tap IR (n-back-with-lures)5—compared to others with this element removed—confer selective benefits on an untrained recognition task6 containing high-IR items?
- Hypotheses:
 1. According to a process-specificity account, subjects training on an IR task—but not other tasks—should demonstrate pre/post improvements on the untrained IR recognition task.
 2. Further, only high-IR recognition items should improve following training.

2. METHOD

2.1. Training Study Design

- **Block 1: 3-Back-with-Lures**
 - No Lures Training (Low IR): Non-adaptive 3-back (N = 22)
 - Lures Training (High IR): Adaptive 3-back-with-lures (N = 30)

- **Block 2: 6-Back-with-Lures**
 - No Lures Training (Low IR): Adaptive 6-back (N = 22)
 - Lures Training (High IR): Adaptive 6-back-with-lures (N = 30)

2.2. Transfer Measure: Recognition Conflict

- Global Block (Low IR)
 - Indicate if each probe was in the same location as the recent memory list.
- Local Block (High IR)
 - Indicate if each probe was in the same location as the recent memory list.

3. RESULTS

3.1. Posttest N-Back-with-Lures

- Only the Lures trainees improved from pre to posttest and only on targets and lures of the local block.

4. SUMMARY & CONCLUSION

- Manipulation check: Each training group improved where expected
 - Lures trainees (vs. no-lures trainees) showed superior performance on lure items on the posttest n-back task.
 - The only training group to demonstrate both greater sensitivity and a higher response criterion on the posttest n-back task was the Lures group.
- Selective transfer to high-IR recognition trials by the Lures group only
 - Lures trainees, but no other group, showed faster response times following training on target and lure items in the high-IR local block.
 - A higher response criterion was observed for the Lures group only from pre to posttest on the high-IR local block; no other training groups showed this effect and no such effects were seen in the low-IR global block.
- Findings provide support for the trainability of process-specific IR abilities
 - Selective pattern suggests a need for IR mechanisms to perform the local block.
 - Improvement on the transfer task is not due to motivation alone, as all training tasks are similar, but the only group to improve was presented with an IR demand.
 - Important implications for enhancing IR measures beyond the present transfer task (e.g., resolving among competing interpretations while processing language).

5. REFERENCES

Support provided by the Center for Advanced Study of Language and NSF IGERT award DGE-001465 to the University of Maryland. For more information, please contact Erika Hussey at ehussey@umd.edu. For copies, scan...